Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Eliyanti A. Othman, Naemah Supian and Bohari M. Yamin*

School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence e-mail:
bohari@pkrisc.cc.ukm.my

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.064$
$w R$ factor $=0.155$
Data-to-parameter ratio $=15.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1-Benzoyl-4-methylthiosemicarbazide

In the title compound, $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{OS}$, the OCN group makes dihedral angles of 30.48 (16) and $74.41(14)^{\circ}$, respectively, with the phenyl and methylthiourea groups. The crystal structure is stabilized by weak intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}, \mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, to form a two-dimensional network.

Comment

The continuing efforts to synthesize new thiosemicarbazide derivatives are driven by their ability to form complexes with metal ions and also their biological activities. As an example, 4-(2-methylprop-2-enyl)-1-[3-(trifluoromethyl)phenyl]thiosemicarbazide has been found to exhibit anti-implantation activity (Nagarajan et al., 1984).

(I)

The title molecule, (I), adopts a cis-trans configuration with respect to the position of the methyl and benzoylamine

Molecular structure of (I), with 50% probability displacement ellipsoids.

Figure 2
Packing diagram of (I), viewed down the c axis. The dashed lines denote the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds.
groups, respectively, relative to the S atom across the $\mathrm{N} 3-\mathrm{C} 8$ and $\mathrm{N} 2-\mathrm{C} 8$ bonds (Fig. 1), as observed in the related compounds 1-methyl-4-salicyloylthiosemicarbazide (Gors et al., 1979) and 4-phenyl-1-(propan-2-ylidene)thiosemicarbazide (Jian et al., 2005). The bond lengths and angles in (I) are in normal ranges (Allen et al., 1987) and comparable to those in the above-cited compounds.

The methylthiourea (S1/N2/N3/C8/C9), phenyl (C1-C6) and $\mathrm{O} 1 / \mathrm{C} 7 / \mathrm{N} 1$ fragments are each planar. The maximum deviation is 0.011 (3) \AA for atom C1 in the phenyl group. The $\mathrm{O} 1 / \mathrm{C} 7 / \mathrm{N} 1$ fragment makes dihedral angles of 30.48 (16) and $74.41(14)^{\circ}$ with the phenyl and methylthiourea fragments, respectively. The phenyl and methylthiourea fragments are inclined to each other by $75.12(14)^{\circ}$. In the crystal structure, the molecules are linked by weak intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$, $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) to form a two-dimensional network (Fig. 2).

Experimental

A solution of 4-methyl-thiosemicarbazide $(1.05 \mathrm{~g}, 0.01 \mathrm{~mol})$ in acetone (50 ml) was added dropwise into an acetone solution (50 ml) containing an equimolar amount of benzoylchloride and ammonium thiocyanate in a two-necked round-bottomed flask. The mixture was refluxed for about 2 h . The light-yellow solution was filtered off and colourless crystals were obtained after five days of evaporation (yield 85%, m.p. 185.3-188.8 K).

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{OS}$
$M_{r}=209.27$
Monoclinic, $P 2_{1} / c$
$a=12.110$ (14) \AA
$b=9.958$ (11) \AA
$c=8.758$ (10) \AA
$\beta=102.69$ (2) ${ }^{\circ}$
$V=1030(2) \AA^{3}$
$Z=4$

Data collection
Bruker SMART CCD area-detector diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\text {min }}=0.873, T_{\text {max }}=0.947$
5555 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.064$
$w R\left(F^{2}\right)=0.155$
$S=1.23$
2014 reflections
127 parameters
H -atom parameters constrained

2014 independent reflections
1807 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.050$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-13 \rightarrow 14$
$k=-12 \rightarrow 11$
$l=-10 \rightarrow 10$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0526 P)^{2}\right. \\
& \quad+0.5802 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.29 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.22 \mathrm{e} \mathrm{~A}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

S1-C8	$1.694(3)$	$\mathrm{N} 2-\mathrm{C} 8$	$1.347(4)$
$\mathrm{O} 1-\mathrm{C} 7$	$1.220(4)$	$\mathrm{N} 3-\mathrm{C} 8$	$1.320(4)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.361(4)$	$\mathrm{N} 3-\mathrm{C} 9$	$1.448(4)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.387(3)$		
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{N} 2$	$117.8(3)$	$\mathrm{N} 3-\mathrm{C} 8-\mathrm{N} 2$	$117.9(2)$
$\mathrm{C} 8-\mathrm{N} 2-\mathrm{N} 1$	$122.7(2)$	$\mathrm{N} 3-\mathrm{C} 8-\mathrm{S} 1$	$125.4(2)$
$\mathrm{C} 8-\mathrm{N} 3-\mathrm{C} 9$	$124.7(3)$	$\mathrm{N} 2-\mathrm{C} 8-\mathrm{S} 1$	$116.7(2)$

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{~S}^{\mathrm{i}}$	0.86	2.66	$3.334(5)$	136
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{~S}^{1 i}$	0.86	2.66	$3.248(4)$	127
$\mathrm{~N} 3-\mathrm{H} 3 A \cdots 1^{\mathrm{i}}$	0.86	2.22	$2.936(5)$	140
$\mathrm{C} 3-\mathrm{H} 3 B \cdots \mathrm{O}^{\mathrm{iii}}$	0.93	2.60	$3.321(6)$	135

Symmetry codes: (i) $x,-y+\frac{3}{2}, z+\frac{1}{2}$; (ii) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$; (iii) $-x, y+\frac{1}{2},-z+\frac{1}{2}$.
All H atoms were placed in idealized positions and allowed to ride on their parent C and N atoms with distances constrained to 0.93 (aromatic C-H), $0.96($ methyl $\mathrm{C}-\mathrm{H})$ or $0.86 \AA(\mathrm{~N}-\mathrm{H}) . U_{\text {iso }}(\mathrm{H})$ values were set at $1.2 U_{\text {eq }}$ (carrier atom) for aromatic CH and NH groups, and $1.5 U_{\text {eq }}$ (carrier atom) for the CH_{3} group.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

The authors thank the Malaysian Government and Universiti Kebangsaan Malaysia for the research grants IRPA No. 09-02-02-0163.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1-19.

Bruker (2000). SADABS (Version 2.01), SMART (Version 5.630) and SAINT (Version 6.36a), Bruker AXS Inc., Madison, Wisconsin, USA.
Gors, C., Baert, F., Henichart, J. P. \& Houssin, R. (1979). J. Mol. Struct. 55, $223-$ 233.

Jian, F.-F., Bai, Z.-S., Xiao, H.-L. \& Li, K. (2005). Acta Cryst. E61, o653-o654.

organic papers

Nagarajan, K., Tawalker, P. K., Klkarni, C. L., Venkateswarlu, A., Prabhu, S. S. \& Nyak, G. V. (1984). Indian J. Chem. Sect B, 23, 1243-1257.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.

Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

