organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Eliyanti A. Othman, Naemah Supian and Bohari M. Yamin*

School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence e-mail: bohari@pkrisc.cc.ukm.my

Key indicators

Single-crystal X-ray study T = 298 K Mean σ (C–C) = 0.005 Å R factor = 0.064 wR factor = 0.155 Data-to-parameter ratio = 15.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1-Benzoyl-4-methylthiosemicarbazide

In the title compound, $C_9H_{11}N_3OS$, the OCN group makes dihedral angles of 30.48 (16) and 74.41 (14)°, respectively, with the phenyl and methylthiourea groups. The crystal structure is stabilized by weak intermolecular $N-H\cdots S$, $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds, to form a two-dimensional network.

Comment

The continuing efforts to synthesize new thiosemicarbazide derivatives are driven by their ability to form complexes with metal ions and also their biological activities. As an example, 4-(2-methylprop-2-enyl)-1-[3-(trifluoromethyl)phenyl]thiosemicarbazide has been found to exhibit anti-implantation activity (Nagarajan *et al.*, 1984).

The title molecule, (I), adopts a *cis–trans* configuration with respect to the position of the methyl and benzoylamine

© 2006 International Union of Crystallography Printed in Great Britain – all rights reserved

Molecular structure of (I), with 50% probability displacement ellipsoids.

Received 21 October 2005 Accepted 28 November 2005 Online 7 December 2005

 $> 2\sigma(I)$

Figure 2

Packing diagram of (I), viewed down the c axis. The dashed lines denote the N-H···O and N-H···S hydrogen bonds.

groups, respectively, relative to the S atom across the N3-C8 and N2-C8 bonds (Fig. 1), as observed in the related compounds 1-methyl-4-salicyloylthiosemicarbazide (Gors et al., 1979) and 4-phenyl-1-(propan-2-ylidene)thiosemicarbazide (Jian et al., 2005). The bond lengths and angles in (I) are in normal ranges (Allen et al., 1987) and comparable to those in the above-cited compounds.

The methylthiourea (S1/N2/N3/C8/C9), phenyl (C1-C6) and O1/C7/N1 fragments are each planar. The maximum deviation is 0.011 (3) Å for atom C1 in the phenyl group. The O1/C7/N1 fragment makes dihedral angles of 30.48 (16) and 74.41 $(14)^{\circ}$ with the phenyl and methylthiourea fragments, respectively. The phenyl and methylthiourea fragments are inclined to each other by 75.12 $(14)^{\circ}$. In the crystal structure, the molecules are linked by weak intermolecular $N-H\cdots S$, $N-H \cdots O$ and $C-H \cdots O$ hydrogen bonds (Table 2) to form a two-dimensional network (Fig. 2).

Experimental

A solution of 4-methyl-thiosemicarbazide (1.05 g, 0.01 mol) in acetone (50 ml) was added dropwise into an acetone solution (50 ml) containing an equimolar amount of benzoylchloride and ammonium thiocyanate in a two-necked round-bottomed flask. The mixture was refluxed for about 2 h. The light-yellow solution was filtered off and colourless crystals were obtained after five days of evaporation (yield 85%, m.p. 185.3-188.8 K).

Crystal data

$C_9H_{11}N_3OS$	$D_x = 1.349 \text{ Mg m}^{-3}$
$M_r = 209.27$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 2263
a = 12.110 (14) Å	reflections
b = 9.958 (11) Å	$\theta = 1.7-26.0^{\circ}$
c = 8.758 (10) Å	$\mu = 0.28 \text{ mm}^{-1}$
$\beta = 102.69 \ (2)^{\circ}$	T = 298 (2) K
$V = 1030 (2) \text{ Å}^3$	Block, colourless
Z = 4	$0.49 \times 0.20 \times 0.19$ mm

Data collection

Bruker SMART CCD area-detector	2014 independent reflections
diffractometer	1807 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.050$
Absorption correction: multi-scan	$\theta_{\rm max} = 26.0^{\circ}$
(SADABS; Bruker, 2000)	$h = -13 \rightarrow 14$
$T_{\min} = 0.873, T_{\max} = 0.947$	$k = -12 \rightarrow 11$
5555 measured reflections	$l = -10 \rightarrow 10$
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0526P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.064$	+ 0.5802P]
$wR(F^2) = 0.155$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.23	$(\Delta/\sigma)_{\rm max} < 0.001$
2014 reflections	$\Delta \rho_{\rm max} = 0.29 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

127 parameters

Selected geometric parameters (Å, °).

H-atom parameters constrained

S1-C8	1.694 (3)	N2-C8	1.347 (4)
O1-C7	1.220 (4)	N3-C8	1.320 (4)
N1-C7	1.361 (4)	N3-C9	1.448 (4)
N1-N2	1.387 (3)		
C7-N1-N2	117.8 (3)	N3-C8-N2	117.9 (2)
C8-N2-N1	122.7 (2)	N3-C8-S1	125.4 (2)
C8-N3-C9	124.7 (3)	N2-C8-S1	116.7 (2)

 $\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1-H1A\cdots S1^{i}$	0.86	2.66	3.334 (5)	136
$N2-H2A\cdots S1^{ii}$	0.86	2.66	3.248 (4)	127
$N3-H3A\cdotsO1^{i}$	0.86	2.22	2.936 (5)	140
$C3-H3B\cdots O1^{iii}$	0.93	2.60	3.321 (6)	135
	2 1		1 1	

Symmetry codes: (i) $x, -y + \frac{3}{2}, z + \frac{1}{2}$; (ii) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (iii) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$.

All H atoms were placed in idealized positions and allowed to ride on their parent C and N atoms with distances constrained to 0.93 (aromatic C-H), 0.96 (methyl C-H) or 0.86 Å (N-H). $U_{iso}(H)$ values were set at $1.2U_{eq}$ (carrier atom) for aromatic CH and NH groups, and $1.5U_{eq}$ (carrier atom) for the CH₃ group.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

The authors thank the Malaysian Government and Universiti Kebangsaan Malaysia for the research grants IRPA No. 09-02-02-0163.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1-19.

- Bruker (2000). SADABS (Version 2.01), SMART (Version 5.630) and SAINT (Version 6.36a), Bruker AXS Inc., Madison, Wisconsin, USA. Gors, C., Baert, F., Henichart, J. P. & Houssin, R. (1979). J. Mol. Struct. 55, 223-
- 233

Jian, F.-F., Bai, Z.-S., Xiao, H.-L. & Li, K. (2005). Acta Cryst. E61, 0653-0654.

Nagarajan, K., Tawalker, P. K., Klkarni, C. L., Venkateswarlu, A., Prabhu, S. S. & Nyak, G. V. (1984). *Indian J. Chem. Sect B*, **23**, 1243–1257. Nardelli, M. (1995). *J. Appl. Cryst.* **28**, 659.

Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.